
Documentation
Release 1.0.0

Julie Orjuela (IRD),
Aurore Comte (IRD),

Sebastien Ravel (CIRAD),
Florian Charriat (CIRAD)

Sep 10, 2020

Getting started

Installation . 1
Mandatory installation . 1
Optional Installation . 1
Available data test . 1
From assembly to correction . 1

Assembly . 2
Circularisation . 2
Polishing . 3
Correction . 3

Checking assembly quality . 3
Mandatory Quality tools . 4
Optional Quality tools . 4
Output report . 4

Prepare config.yaml . 5
1. Providing data . 5
2. Chose assemblers, polisher and correctors . 5
3. Chose quality tools . 6
4. Parameters for some specific tools . 7

Launching on a single machine . 10
Launching on HPC clusters . 10

Preparing Slurm cluster configuration using cluster_config.yaml 10
submit_culebront.sh . 11
slurm_wrapper . 11

Output on CulebrONT . 11
Report . 12
Citation . 12
Useful notes . 12
Thanks . 13
License . 13

i

Documentation, Release 1.0.0

Installation

Mandatory installation

CulebrONT uses

git clone https://github.com/SouthGreenPlatform/CulebrONT_pipeline.git
cd CulebrONT_pipeline

Optional Installation

To obtain a clear and correct report, please add also the following dependencies from R:

• remote::install_github("strengejacke/strengejacke")

• ‘plotly’, ‘dplyr’, ‘optparse’, ‘htmltools’, ‘rmdformats’, ‘magrittr’, ‘yaml’, ‘png’, ‘here’, ‘htmlwid-
gets’.

Available data test

A data test Data-Xoo-sub/ is available on https://itrop.ird.fr/culebront_utilities/. Feel free to down-
load it using wget and put it on CulebrONT repertory.

Assembly, circularisation, polishing and correction steps are included in CulebrONT, and can be acti-
vated (or not) according to user’s requests. The most commonly used tools in the community for each
step are integrated, as well as various quality control tools. CulebrONT also generates a report compiling
information obtained at every step.

From assembly to correction

CulebrONT is really flexible to assembly and circularise (or not) assembled molecules, polish and cor-
rect assemblies.

For assemblies, you must launch at least one of assemblers included in CulebrONT and pipe assembly
with circularisation, polishing and correction steps as well as with the quality control pipeline.

For circularisation, you can activate/deactivate circularisation steps if needed. If you are interested on
eukaryotic organims, thus circularisation is not necessary use CIRCULAR=False on config.yaml file.

Directed acyclic graphs (DAGs) show the differences between deactivated (left) and activated (right)
CIRCULAR step on configuration file.

Installation 1

https://itrop.ird.fr/culebront_utilities/

Documentation, Release 1.0.0

Assembly

CulebrONT includes (at the moment) six recent and community-validated assemblers : Flye, Miniasm,
Canu, Shasta, Smartdenovo et Raven.

Included tools :

• Flye version >= 2.6 https://github.com/fenderglass/Flye

• Canu version >= 1.9 https://canu.readthedocs.io/en/latest/quick-start.html

• Miniasm version >= 0.3 https://github.com/lh3/miniasm + Minipolish version >= 0.1.2 https://
github.com/rrwick/Minipolish

• Shasta version 0.5.1 https://github.com/chanzuckerberg/shasta

• Smartdenovo https://github.com/ruanjue/smartdenovo

• Raven version >= 1.1.10 https://github.com/lbcb-sci/raven

Circularisation

If an assembled molecule is circular, e.g. for bacteria (CIRCULAR=True), this molecule is tagged
and will be treated specially in pipeline. We implemented tagging and rotation of circular molecule
before each racon polishing step, and we fixing start position on circular genome. This is efficient when
multiple genome alignments are envisaged.

• If Circularisation (CIRCULAR=True) step is chosen, the –plasmids option on Flye is activated.

• Ciclator is used to circularise assembly from Canu, Raven, Smartdenovo et Raven. Circlator will
attempt to identify each circular sequence and output a linearised version from each of them.

2 Getting started

images/assembly_to_correction.png
https://github.com/fenderglass/Flye
https://canu.readthedocs.io/en/latest/quick-start.html
https://github.com/lh3/miniasm
https://github.com/rrwick/Minipolish
https://github.com/rrwick/Minipolish
https://github.com/chanzuckerberg/shasta
https://github.com/ruanjue/smartdenovo
https://github.com/lbcb-sci/raven

Documentation, Release 1.0.0

• Circularisation for Miniasm is already performed by minipolish.

Included tools :

• Circlator version >= 1.5.5 https://github.com/sanger-pathogens/circlator

Polishing

Polishing step is ensured by Racon. Racon corrects raw contigs generated by rapid assembly methods
with original ONT reads. Choose how many rounds of Racon you want to perform (constrains from 1 to
9 rounds), and CulebrONT will recursively do it for you. Generally 3 or 4 iterations are the best choices.

Included tools :

• Racon version >= 1.4.3 https://github.com/isovic/racon

Correction

Correction can improve the consensus sequence for a draft genome assembly. We include Nanopolish
and Medaka on correction steps. With CulebrONT you can now train a Medaka model and use it directly
to obtain a consensus from you favorite organism. In addition, Medaka can use a dedicated GPU resource
if indicated.

Included tools :s

• Medaka Medaka-gpu version >= 1.0.3 https://github.com/nanoporetech/medaka

• Nanopolish version >= 0.11.3 https://nanopolish.readthedocs.io/en/latest/index.html#

Checking assembly quality

A variety of useful tools exist for check high accuracy assembly.

Checking assembly quality 3

https://github.com/sanger-pathogens/circlator
https://github.com/isovic/racon
https://github.com/nanoporetech/medaka
https://nanopolish.readthedocs.io/en/latest/index
images/quality.png

Documentation, Release 1.0.0

Mandatory Quality tools

In CulebrONT, BUSCO and QUAST are selected by default. BUSCO helps to check if you
have a good assembly, by searching the expected single-copy lineage-conserved orthologs
in any newly-sequenced genome from an appropriate phylogenetic clade. QUAST is a good
starting point to help evaluate the quality of assemblies, providing many helpful contiguity
statistics. BUSCO and QUAST statistics are summarized in the CulebrONT final report.

• BUSCO and QUAST statistics will be calculated by acivaiting the QUALITY (ASSEMBLY, POL-
ISHING, CORRECTION) steps. You must activate at least one over three QUALITY options on
config.yaml file.

Included tools :

• BUSCO version >= 4.0.5

• QUAST version >= 5.0.2

Optional Quality tools

CulebrONT checks also the quality of assemblies by using Bloobtools, Assemblytics or KAT, or any
combination of these. Weesam can be also used to check read coverage over you assembly (for small
genome only). Alignment of several assembles (or from any steps : assembly, polishing, correction) and
there comparison is performed using Mauve (for small genome only).

Included tools :

• Bloobtools version >= 1.1.1

• Assemblytics version >= 1.2

• KAT version >= 2.4.1

• Weesam version > 1.6

• Mauve > 2.4.0.snapshot_2015_02_13

Output report

CulebrONT generates a report presenting the summary statistics from different steps of the pipeline.

This report has different dependencies to be preinstalled, as recomanded in the installation step

Don’t worry if you do not have access to all these depedencies !! The whole packages used in the
report are available in the R.def Singularity image, available at the Singularity hub or build from the
CulebrONT Containers repository (only if you have sudo super cowpowers).

For IRD iTrop or IFB HPC resources users ONLY

On i-Trop HPC
module load system/singularity/3.3.0
module load system/python/3.7.2

On IFB HPC
module load singularity

(continues on next page)

4 Getting started

https://github.com/SouthGreenPlatform/CulebrONT_pipeline/tree/master/Containers

Documentation, Release 1.0.0

(continued from previous page)

module load python/3.7
module load graphviz/2.40.

Prepare config.yaml

To run the pipeline you have to provide the data path and activate/deactivate options in every step from
config.yaml file.

1. Providing data

First, indicate the data path in the configuration file

DATA:
FASTQ: '/path/to/fastq/directory/'
REF: '/path/to/referencefile.fasta'
GENOME_SIZE: '1m'
FAST5: '/path/to/fast5/directory/'
ILLUMINA: '/path/to/illumina/directory/'
OUTPUT: '/path/to/output/directory/'
CIRCULAR : True/False

• FASTQ: CulebrONT takes as input a FASTQ directory. Every FASTQ file should contain the
whole set of reads to be assembled (meaning that multiple runs must be merged in a single FASTQ
file), as each FASTQ file found in this repertory will be assembled independently. FASTQ files can
be compressed or not (gzipped). Naming convention accepted by CulebrONT are: NAME.fastq.gz
or NAME.fq.gz or NAME.fastq or NAME.fq.

• REF: Only one REFERENCE genome file will be used by CulebrONT. This REFERENCE will
be used for QC steps (QUAST and MAUVE).

• GENOME_SIZE : Estimated genome size (m,g,k) of the assembly.

• FAST5: Nanopolish needs FAST5 files to training steps. Please give the path of FAST5 repertory
in the FAST5 DATA parameter. Inside this directory, a subdirectory with the exact same name
as the corresponding FASTQ (before the .fastq.gz) is requested. For instance, if in the FASTQ
directory we have run1.fastq.gz and run2.fastq.gz, CulebrONT is expecting the run1/ and run2/
subdirectories in the FAST5 main directory.

• ILLUMINA : indicate the path to the directory with Illumina sequence data (in fastq or fastq.gz
format) to perform KAT quality. Use preferentially paired-end data.

• OUTPUT: output path directory.

• CIRCULAR : Indicate True or False to activate/deactivate circularisation steps (only to procary-
ote).

2. Chose assemblers, polisher and correctors

Activate/deactivate assemblers and correctors as you wish. By default, Racon is launched as POLISH
tool after each activated assembly step. You must activate at least one assembler and one corrector.

Prepare config.yaml 5

Documentation, Release 1.0.0

Example:

ASSEMBLY:
CANU : False
FLYE : True
MINIASM : False
SHASTA : False
SMARDENOVO : True
RAVEN: True

CORRECTION:
NANOPOLISH : True
MEDAKA : False

3. Chose quality tools

Activate/deactivate quality tools as you wish. By default, BUSCO AND QUAST are launched if ‘True’
in QUALITY (ASSEMBLY OR POLISHING OR CORRECTION OR both) steps.

You must to activate at least one QUALITY step.

Example:

QUALITY:
ASSEMBLY : True
POLISHING : True
CORRECTION : True

Others quality tools are launched only on the final assemblies (BLOBTOOLS, ASSEMBLYTICS,
WEESAM and KAT).

KAT quality tool can be activate but Illumina reads are mandatory in this case.

Others quality tools
WEESAM: True
BLOBTOOLS: True
ASSEMBLYTICS: True
KAT: True

Alignment of various assemblies for small genomes (<10-20Mbp) is also possible by using Mauve.
Mauve will compared each state of the assembly (Raw, Polished and Corrected) for each assembler
used.

A Fixstart step is possible before Mauve MSA to improve alignment on circular molecules.

• Fixstart will be deactivated if CIRCULAR is False

• Only activate MAUVE if you have more than one sample and more than one quality step.

MSA:
FIXSTART: True
MAUVE: True

6 Getting started

Documentation, Release 1.0.0

4. Parameters for some specific tools

Specifically to Racon:

• Racon can be launch recursively from 1 to 9 rounds. 2 or 3 are recommanded.

Specifically to Medaka :

• If ‘MEDAKA_TRAIN_WITH_REF’ is activated, Medaka launchs training using the reference
found in ‘DATA/REF’ param. Medaka does not take into account other medaka model parameters.

• If ‘MEDAKA_TRAIN_WITH_REF’ is deactivated, Medaka does not launch training but uses
instead the model provided in ‘MEDAKA_MODEL_PATH’. If ‘MEDAKA_MODEL_PATH’ is
empty, this param is not used and the default model for E.coli is used.

Standard parameters used:

############ PARAMS ################
params:

MINIMAP2:
PRESET_OPTION: 'map-pb' # -x minimap2 preset option is map-pb by

→˓default (map-pb, map-ont etc)
CANU:

MAX_MEMORY: '15G'
OPTIONS: '-fast'

SMARTDENOVO:
KMER_SIZE: '16'
OPTIONS: '-J 5000'

SHASTA:
MEM_MODE: 'filesystem'
MEM_BACKING: 'disk'

CIRCLATOR:
OPTIONS: ''

RACON:
RACON_ROUNDS: 2 #1 to 9

NANOPOLISH:
segment length to split assembly and correct it default=50000
NANOPOLISH_SEGMENT_LEN: '50000'
overlap length between segments default=200
NANOPOLISH_OVERLAP_LEN: '200'
OPTIONS: ''

MEDAKA:
if 'MEDAKA_TRAIN_WITH_REF' is True, Medaka launchs training

→˓using the reference found in DATA REF param. Medaka does not take in
→˓count other Medaka model parameters below.

MEDAKA_TRAIN_WITH_REF: True
MEDAKA_MODEL_PATH: 'medakamodel/r941_min_high_g303_model.hdf5' #

→˓if empty this param is not used.
BUSCO:

DATABASE : 'Data-Xoo-sub/bacteria_odb10'
MODEL : 'genome'

'SP' : 'caenorhabditis'
SP : ''

QUAST:
REF: 'Data-Xoo-sub/ref/BAI3_Sanger.fsa'

(continues on next page)

Prepare config.yaml 7

Documentation, Release 1.0.0

(continued from previous page)

GFF: ''
GENOME_SIZE_PB: 48000000
#GENOME_SIZE_PB: 1000000
OPTIONS : ''

DIAMOND:
DATABASE: 'Data-Xoo-sub/testBacteria.dmnd'

MUMMER:
-l default 20

MINMATCH : 100
-c default 65

MINCLUSTER: 500
ASSEMBLYTICS:

UNIQUE_ANCHOR_LEN: 10000
MIN_VARIANT_SIZE: 50
MAX_VARIANT_SIZE: 10000

Singularity containers

To use Singularity containers, provide to CulebrONT the already build Singularity containers path on
your computer or cluster.

As an example, here are singularity images found on the i-Trop HPC from the SouthGreen platform.

cluster with scratch temporary directory
SCRATCH = False

@ITROP PATH
tools:
ASSEMBLERS:

CANU_SIMG : '/data3/projects/containers/CULEBRONT/canu-1.9.simg'
FLYE_SIMG : '/data3/projects/containers/CULEBRONT/flye-2.7.1.simg'
MINIASM_SIMG : '/data3/projects/containers/CULEBRONT/miniasm-0.3.simg'
MINIPOLISH_SIMG : '/data3/projects/containers/CULEBRONT/minipolish-0.1.

→˓2.simg'
RAVEN_SIMG : '/data3/projects/containers/CULEBRONT/raven_conda-gpu-v1.

→˓1.10.simg'
SMARTDENOVO_SIMG : '/data3/projects/containers/CULEBRONT/smartdenovo.

→˓simg'
SHASTA_SIMG : '/data3/projects/containers/CULEBRONT/shasta-0.5.1.simg'

CIRCULARISATION
CIRCLATOR_SIMG : '/data3/projects/containers/CULEBRONT/circlator-1.5.5.

→˓simg'
POLISHERS:

RACON_SIMG : '/data3/projects/containers/CULEBRONT/racon-1.4.3.simg'
NANOPOLISH_SIMG : '/data3/projects/containers/CULEBRONT/nanopolish-0.

→˓11.3.simg'
CORRECTION

MEDAKA_SIMG : '/data3/projects/containers/CULEBRONT/medaka_conda-gpu-1.
→˓0.3.simg'
QUALITY

BUSCO_SIMG : '/data3/projects/containers/CULEBRONT/busco-4.0.5.simg'
(continues on next page)

8 Getting started

Documentation, Release 1.0.0

(continued from previous page)

QUAST_SIMG : '/data3/projects/containers/CULEBRONT/quast-5.0.2.simg'
WEESAM_SIMG : '/data3/projects/containers/CULEBRONT/weesam.simg'
BLOBTOOLS_SIMG : '/data3/projects/containers/CULEBRONT/bloobtools-v1.1.

→˓1.simg'
MINIMAP2_SIMG: '/data3/projects/containers/CULEBRONT/nanopolish-0.11.3.

→˓simg'
DIAMOND_SIMG : '/data3/projects/containers/CULEBRONT/diamond-0.9.30.

→˓simg'
MUMMER_SIMG : '/data3/projects/containers/CULEBRONT/mummer-4beta.simg'
ASSEMBLYTICS_SIMG : '/data3/projects/containers/CULEBRONT/assemblytics-

→˓1.2.simg'
SAMTOOLS_SIMG : '/data3/projects/containers/CULEBRONT/nanopolish-0.11.

→˓3.simg'
KAT_SIMG : '/data3/projects/containers/CULEBRONT/kat-2.4.2.simg'
MINICONDA_SIMG : 'shub://vibaotram/singularity-container:cpu-guppy3.4-

→˓conda-api'
R_SIMG: '/data3/projects/containers/CULEBRONT/R.simg'

Available recipes from containers are available in the Containers folder, as well as on the main Cule-
brONT repository. Feel free to build them on your own computer (or cluster); be careful, you need root
rights to do it.

Built singularity images are also available on https://itrop.ird.fr/culebront_utilities/. Feel free to down-
load it using wget for example.

singularity hub

If you want to recover singularity images from the Singularity Hub and build them, please use these
paths :

cluster with scratch temporal repertory
SCRATCH : False

tools:
ASSEMBLERS:

CANU_SIMG: 'shub://SouthGreenPlatform/CulebrONT_pipeline:canu-1.9.def
→˓'

FLYE_SIMG: 'shub://SouthGreenPlatform/CulebrONT_pipeline:flye-2.6.def
→˓'

MINIASM_SIMG : 'shub://SouthGreenPlatform/CulebrONT_pipeline:miniasm-
→˓0.3.def'

MINIPOLISH_SIMG : 'shub://SouthGreenPlatform/CulebrONT_
→˓pipeline:minipolish-0.1.2.def'

RAVEN_SIMG : 'shub://SouthGreenPlatform/CulebrONT_pipeline:raven_
→˓conda-gpu-v1.1.10.simg'

SMARTDENOVO_SIMG : 'shub://SouthGreenPlatform/CulebrONT_
→˓pipeline:smartdenovo.simg'

SHASTA_SIMG : 'shub://SouthGreenPlatform/CulebrONT_pipeline:shasta-0.
→˓5.1.simg'
CIRCULARISATION

CIRCLATOR_SIMG : 'shub://SouthGreenPlatform/CulebrONT_
→˓pipeline:circlator-1.5.5.def' (continues on next page)

Prepare config.yaml 9

https://github.com/SouthGreenPlatform/CulebrONT.git
https://github.com/SouthGreenPlatform/CulebrONT.git
https://itrop.ird.fr/culebront_utilities/

Documentation, Release 1.0.0

(continued from previous page)

POLISHERS:
RACON_SIMG : 'shub://SouthGreenPlatform/CulebrONT_pipeline:racon-1.4.

→˓3.def'
CORRECTION

NANOPOLISH_SIMG : 'shub://SouthGreenPlatform/CulebrONT_
→˓pipeline:nanopolish-0.11.3.def'

MEDAKA_SIMG : 'shub://SouthGreenPlatform/CulebrONT_pipeline:medaka_
→˓conda-gpu-1.0.3.simg'
QUALITY

BUSCO_SIMG : 'shub://SouthGreenPlatform/CulebrONT_pipeline:busco-4.
→˓def'

QUAST_SIMG : 'shub://SouthGreenPlatform/CulebrONT_pipeline:quality.
→˓def'

WEESAM_SIMG : 'shub://SouthGreenPlatform/CulebrONT_pipeline:quality.
→˓def'

BLOBTOOLS_SIMG : 'shub://SouthGreenPlatform/CulebrONT_
→˓pipeline:quality.def'

MINIMAP2_SIMG: 'shub://SouthGreenPlatform/CulebrONT_
→˓pipeline:nanopolish-0.11.3.simg'

DIAMOND_SIMG : 'shub://SouthGreenPlatform/CulebrONT_pipeline:quality.
→˓def'

MUMMER_SIMG : 'shub://SouthGreenPlatform/CulebrONT_pipeline:mummer-
→˓4beta.def'

ASSEMBLYTICS_SIMG : 'shub://SouthGreenPlatform/CulebrONT_
→˓pipeline:quality.def'

SAMTOOLS_SIMG : 'shub://SouthGreenPlatform/CulebrONT_
→˓pipeline:nanopolish-0.11.3.simg'

KAT_SIMG : 'shub://SouthGreenPlatform/CulebrONT_pipeline:quality.def'
MINICONDA_SIMG: 'shub://vibaotram/singularity-container:cpu-guppy3.4-

→˓conda-api'
R_SIMG: 'shub://SouthGreenPlatform/CulebrONT_pipeline:r.def'

Launching on a single machine

To launch CulebrONT on a single machine, you should use the parameters --use-singularity
and --use-conda.

See the example below:

Launching on HPC clusters

Preparing Slurm cluster configuration using cluster_config.yaml

On cluster_config.yaml, you can add partition, memory and threads to be used by default for
each rule. If more memory or threads are requested, please adapt the content of this file before running
on a cluster for every rule. For instance give more memory to Canu and Medaka.

Here is a example of the configuration file we used on the i-Trop HPC.

10 Getting started

Documentation, Release 1.0.0

__default__:
cpus-per-task : 4
ntasks : 1
mem-per-cpu : '2'
partition : "normal"
output : 'logs/stdout/{rule}/{wildcards}'
error : 'logs/error/{rule}/{wildcards}'

#
#run_nanopolish :
cpus-per-task : 8
mem-per-cpu : '4'
partition : "long"
#
run_canu:

cpus-per-task : 8
mem-per-cpu : '4'
partition : "long"

submit_culebront.sh

This is a typical launcher for using CulebrONT on a Slurm cluster. You have to adapt it for the configu-
ration of your favorite cluster. Please adapt this script also if you want to use wrappers or profiles.

This launcher can be submitted to the Slurm queue typing:

Important : Do not forget to adapt submit_culebront.sh if you want to use wrappers or profile!!

slurm_wrapper

A slurm_wrapper.py script is available on CulebrONT projet to manage ressources from your cluster
configuration (taken from cluster_config.yaml file). This is the easier way to know what is running on
cluster and to adapt ressources for every job. Take care, this cluster_config.yaml file is becomming
obsolete on next Snakemake versions.

Profiles

Optionally is possible to use Profiles in order to run CulebrONT on HPC cluster. Please follow the
recommandations found on the SnakeMake profile github.

Here is an example of how to profile a Slurm scheduler using those recommandations.

SLURM Profile slurm-culebrONT is now created on : /shared/home/$USER/.config/
snakemake/slurm-culebrONT repertory

Output on CulebrONT

The architecture of CulebrONT output is designed as follows:

The same Architecture per sample (fastq = SAMPLE-1 in example) is followed for LOG files.

Output on CulebrONT 11

https://github.com/Snakemake-Profiles/
https://github.com/Snakemake-Profiles/slurm

Documentation, Release 1.0.0

Report

CulebrONT generates a beautiful report containing, foreach fastq found on input directory, a summary
of interesting statistics such as busco, quast and others ones that you will discover!

Important: To visualise the report created by CulebrONT, transfer the whole REPORT directory on your
local machine before opening the report.html file with a navigator.

Citation

@Authors:

Aurore Comte (IRD) and Julie Orjuela (IRD) developped CulebrONT.

Sebastien Ravel (CIRAD), Florian Charriat (CIRAD) helped on SnakeMake bugs, tricks and documen-
tation.

François Sabot (IRD) was involved in coverage tools implementation and benchmarking.

Ndomassi Tando (IRD) helped on Singularity containers creation.

Sebastien Cunnac (IRD) and Tram Vi (IRD) tested on real data and helped for circularisation improve-
ments.

Useful notes

Before launching CulebrONT, you could base-calling of arbitrarily multiplexed libraries across several
Minion runs with sequencing quality control and gather the output files by genome for subsequent steps.
For that use https://github.com/vibaotram/baseDmux.

12 Getting started

./SupplementaryFiles/report.png
https://github.com/vibaotram/baseDmux

Documentation, Release 1.0.0

Thanks

The authors acknowledge the IRD i-Trop HPC (South Green Platform) at IRD Montpellier for providing
HPC resources that have contributed to this work. https://bioinfo.ird.fr/ - http://www.southgreen.fr

Thanks to Yann Delorme for this beautiful logo https://nimarell.github.io/resume

License

Licencied under CeCill-C (http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html) and
GPLv3 Intellectual property belongs to IRD and authors.

Thanks 13

https://bioinfo.ird.fr/
http://www.southgreen.fr
https://nimarell.github.io/resume
http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html

	Installation
	Mandatory installation
	Optional Installation
	Available data test
	From assembly to correction
	Assembly
	Circularisation
	Polishing
	Correction

	Checking assembly quality
	Mandatory Quality tools
	Optional Quality tools
	Output report

	Prepare config.yaml
	1. Providing data
	2. Chose assemblers, polisher and correctors
	3. Chose quality tools
	4. Parameters for some specific tools

	Launching on a single machine
	Launching on HPC clusters
	Preparing Slurm cluster configuration using cluster_config.yaml
	submit_culebront.sh
	slurm_wrapper

	Output on CulebrONT
	Report
	Citation
	Useful notes
	Thanks
	License

